Multiplicity Results for Nonlinear Eigenvalue Problems on Unbounded Domains
نویسنده
چکیده
In this paper we prove a multiplicity result for a class of eigenvalue problems with nonlinear boundary conditions on an unbounded domain. Many results have been obtained by Cârstea and Rădulescu [3], Chabrowski [5], [6], Kandilakis and Lyberopoulos [10], Lisei, Varga and Horváth [13] and Pflüger [16]. MSC 2000. 35J60, 35P30, 58E05.
منابع مشابه
A Multiplicity Result for Quasilinear Problems with Convex and Concave Nonlinearities and Nonlinear Boundary Conditions in Unbounded Domains
We study the following quasilinear problem with nonlinear boundary conditions −∆pu = λa(x)|u|p−2u+ k(x)|u|q−2u− h(x)|u|s−2u, in Ω, |∇u|p−2∇u · η + b(x)|u|p−2u = 0 on ∂Ω, where Ω is an unbounded domain in RN with a noncompact and smooth boundary ∂Ω, η denotes the unit outward normal vector on ∂Ω, ∆pu = div(|∇u|p−2∇u) is the p-Laplacian, a, k, h and b are nonnegative essentially bounded functions...
متن کاملSOLVING SINGULAR ODES IN UNBOUNDED DOMAINS WITH SINC-COLLOCATION METHOD
Spectral approximations for ODEs in unbounded domains have only received limited attention. In many applicable problems, singular initial value problems arise. In solving these problems, most of numerical methods have difficulties and often could not pass the singular point successfully. In this paper, we apply the sinc-collocation method for solving singular initial value problems. The ability...
متن کاملLp Embedding and Nonlinear Eigenvalue Problems for Unbounded Domains
Let R denote real iV-dimensional Euclidean space. Then it is a well-known fact that the imbedding of the Sobolev space Wi,2(R) in LP(R ) is bounded for 2g>pS2N/(N-2), but is definitely not compact. Consequently the theory of critical points for general isoperimetric variational problems defined over arbitrary unbounded domains in R has been little investigated despite its importance. Indeed the...
متن کاملMultiplicity of Solutions for Resonant Neumann Problems with an Indefinite and Unbounded Potential
We examine semilinear Neumann problems driven by the Laplacian plus an unbounded and indefinite potential. The reaction is a Carathéodory function which exhibits linear growth near ±∞. We allow for resonance to occur with respect to a nonprincipal nonnegative eigenvalue, and we prove several multiplicity results. Our approach uses critical point theory, Morse theory and the reduction method (th...
متن کاملSemilinear Neumann problems with indefinite and unbounded potential and crossing nonlinearity
We consider a semilinear Neumann problem with an indefinite and unbounded potential and an asymmetric reaction that crosses at least the principal eigenvalue of the operator −Δ + βI in H1(Ω), β being the potential function. Using a combination of variational methods, with truncation and perturbation techniques and Morse theory, we prove multiplicity theorems providing precise sign information f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009